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Implicit Computation of Three-Dimensional Compressible
Navier—-Stokes Equations Using k—< Closure

G. A. Gerolymos* and 1. Vallet
Université Pierre-et-Marie-Curie, 91405 Orsay, Paris, France

A computational method for the numerical integration of the Favre—Reynolds-averaged three-dimensional com-
pressible Navier-Stokes equations using the Launder—Sharma near-wall k—¢ turbulence closure is developed. The
mean flow and turbulence transport equations are discretized using a finite volume method based on MUSCL Van
Leer flux-vector splitting with Van Albada limiters. The mean flow and turbulence equations are integrated in time
using a fully coupled approximately factored implicit backward Euler method. The resulting scheme is robust and
was found stable for local-time steps with Courant-Friedrichs—Lewy number equal to 50. Higher time steps are
possible but not optimal for convergence. Results are presented for the three Délery transonic channel test-cases.
Although these test-cases are nominally two dimensional, three-dimensional computations presented quantify the
important three-dimensional effects induced by the sidewall boundary layers. Finally computational results are
compared with the experiment for a geometrically three-dimensional transonic nozzle.

Introduction

EAR-WALL two-equation turbulence models!™® are increas-

ingly used in computational fluid dynamics (CFD), and it is
hoped that some of their modeling drawbacks will be corrected by
the use of more advanced models®~!! including near-wall Reynolds-
stress models'2~1 and compressibility effects.'’~*' The interest in
using transport-equation models of turbulence in CFD is the re-
sult not only of their higher accuracy in complex configurations
but also of the simpler computer logic involved with comparison
to zero-equation models. The authors believe that near-wall tur-
bulence models are more interesting for CFD purposes than the
wall-functions approach, although opinion on this is divided.?2~2*

The major problem of codes using transport-equation models
of turbulence in the transonic regime (including shock-wave/
boundary-layer interaction) is their robustness and, as a con-
sequence, their computational efficiency. A satisfactory method
should run from a simple automatic initialization of the flowfield
and have the same convergence characteristics, in terms of Courant—
Friedrichs-Lewy (CFL) number® (time marching schemes) or re-
laxation parameters (pressure-based schemes and Newton-iteration
procedures), as their zero-equation model counterparts, as well as
exhibit robustness characteristics analogous to zero-equation model
methods. The last point is a major item and, if achieved, transport-
equation models will presumably definitely replace zero-equation
models, atleast for complex three-dimensional configurations where
the implementation of models using such concepts as distance from
the wall and profile extremum is delicate.

This work is not concerned so much with turbulence modeling
as with the efficient numerical implementation of low-Reynolds
near-wall two-equation models. An overview of methods using
two-equation models in the transonic regime, including a summary
of their computational characteristics, is interesting (Table 1).26-77
This overview is certainly not exhaustive and is mostly based on
AIAA Journal articles, but the authors believe it is quite repre-
sentative of the evolution of the state of the art over the past 10
years. The nondimensional distance from the wall of the first grid
point nearest to it, n} = nv L/ (ltwip;!) (where n is the distance
from the wall, t,, the resultant wall shear stress, p,, the density
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at the wall, and v,, the kinematic viscosity at the wall), is a very
important grid-resolution parameter. Most workers (Table 1) ac-
knowledge that, in the transonic régime (M < 27), values of ’ﬁ <1
are necessary to obtain accurate grid-independent results.
Practically all methods can be augmented by a multigrid proce-
dure to achieve higher computational efficiency.**-#°~52 Indepen-
dent of this, the admissible CFL number is an approximate gauge
of the computational rapidity of time-marching methods. This is
not true for relaxation methods where time does not appear ex-
plicitly, nor for the hybrid MacCormack scheme. Neither of these
methods can be readily extended to unsteady flows. When time-
marching methods are considered, it appears that the average CFL
number used is ~5 (Table 1). Increasing the optimal CFL number
has a nonlinear accelerating effect on convergence and is, therefore,
highly desirable. Unsteady flow computations consistently use much
higher CFL numbers that are stable in the highly stretched grids used
without local time-stepping (for consistency), and will not be con-
sidered here.”®#2 There are three published methods that appear
more advanced than the others. Coakley™ and Lin et al.*® achieved
CFL = 8 using upwind discretizations with implicit approximate
factorization. Linetal.*® achieved CFL = 70 using a nonfactored im-
plicit method, but the cost/iteration is about three times greater than
factored methods. A more important problem of nonfactored meth-
ods is that computer-memory-requirements are 1 order of magnitude
greater (compared with factored methods in three-dimensions).
There are, unfortunately, few authors who analyze the problems
associated with the numerical implementation of two-equation mod-
els. The use of limiters was introduced by Coakley and Viegas,?’
who used minimum bounds and a maximum-minimum turbulence
length-scale concept to ensure positivity and boundedness of tur-
bulence variables (k, &, or w). Other authors*3-45-46.51.52.57 yged
analogous limiters, often also limiting the production of turbulence
kinetic energy P, with respect to its dissipation ¢ to avoid non-
physical overshoots in the neighborhood of the shock wave. One of
the few systematic attempts to analyze the stability of k—¢ solvers
was reported by Kunz and Lakshminarayana.*® There seems to be
some doubt concerning whether source terms are stiff or not, what
their importance on stability is, and whether their implicit treat-
ment is necessary, different authors reporting contradictory conclu-
sions. There is not necessarily a unique answer to these questions,
since the interaction between the numerical scheme, the limiters,
and the model should be considered as an integrated system and
not separately. A review of the literature and practical experience
tend to point out that (although the authors are unable to prove this
mathematically) upwind schemes are more robust for treating the
convection of turbulence variables; limiters are most important at
the boundary-layer edge, where production and dissipation decrease
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Table 1 Time-marching methods for transonic Navier-Stokes with two-equation closure and local-time-stepping

References Date Two/three dimensional Model (Ref.) Space Time CFL ng
27-29 1977 Two dimensional k-£(3) MacCormack>® Hybrid® — 5
30 1985 Two dimensional g-w(7) Coakley®" SR? implicit®" 5-8 0.8
31 1986 Two dimensional k—&(3) MacCormack> Hybrid® — ?
32-34 1986 Three dimensional k—&(3) MacCormack™ Explicit®” <l WP
35-38 1986 Three dimensional k—e(3) MacCormack>” Hybrid> — 0.3-0.7
39 1986 Two dimensional k—e(6) Beam—Warming® AF¢ implicit ? 1
40 1988 Two dimensional k—£(26) Hopscotch® Explicit®! <l WF
41 1989 Three dimensional g-a(T) Coakley3® SR implicit™® 3-5 1
42 1990 Three dimensional k—£(26) Jameson® SR implicit42 4-6 WF
43 1990 Two dimensional k—£(5) Ni® SR implicit60 3 02
44 1991 Two dimensional k—e(6) Quick® pBd 44 — 1-5
45 1992 Two dimensional k—&(6) Jameson$? Explicit RK® 63 272 1
46 1992 Three dimensional k—&(6) Jameson®3 Explicit RK%3 242 1
47 1992 Two dimensional k—e(5) MacCormack®® Explicit®? 0.4-0.8 1
48 1992 Two dimensional g-a(T) Jameson5? SR implicit3%-60 57 1
49 1993 Two dimensional k—¢ Ni? Explicit5 <l 1
50 1993 Two dimensional k—£(50) Quick®? Explicit PB" <17 1
51,52 1993 Three dimensional k—g Jameson®? Explicit RK® 2«/— WF
53 1994 Three dimensional k—&(5) Beam-Warming® AF implicit® 1
54 1994 Two dimensional k—e(8) Liu and Jameson%8 Explicit RK® 5? 0.5-2
55 1995 Three dimensional k—&(3) Lax-Wendroff® Explicit® <1 3
56 1995 Two dimensional k—e(8) Roe’071 Explicit RK63 37 0.5-2
57 1995 Three dimensional k—£(26) unstructured®’ Roe SR implicit®3.72 2 WF
58 1995 Two dimensional k—e(6) Yee—Harten”? AF implicit*® 37 0.55
58 1995 Two dimensional k—e(6) Yee—Harten?> NFf implicit>8 707 0.55
Present 1996 Three dimensional k—&(5) Van Leer’* 7 AF implicit’6.77 50 05

4SR = spectral radius. YWF = wall functions. ¢AF = approximately factored. dpp = pressure based. ®RK = Runge-Kutta. INF = nonfactored.

rapidly, and diffusion balances convection (an interesting analysis
of the associated instability is given by Stiittgen and Peters**), and
not, as is often stated by wall-function users, in the near-wall re-
gion; and the importance of the implicit treatment of source terms
depends strongly on the scheme used.

The purpose of this work is to develop a fully coupled implicit
upwind scheme for the three-dimensional compressible Navier—
Stokes equations, combining computational efficiency and com-
putational robustness. The method is based on Van Leer MUSCL
discretization’ 7 of the convective terms, with factored implicit
time integration.”®-7” The Jacobian operator of the implicit step is ap-
proximated by a first-order upwind scheme for the convective fluxes,
and a spectral-radius matrix for the viscous fluxes. The source-terms
are simply factored, without using any special procedure, such as
suggested by Shih and Chyu,* or positivity fixes.3! Optimal con-
vergence is obtained for CFL = 50. The method is applied to the
computation of several transonic channel flows.

Flow Model and Computational Method
Flow Model
The flow is modeled by the compressible Favre-Reynolds-
averaged™ ¢ three-dimensional Navier-Stokes equations, with a
compressible flow extension to the Launder—Sharma® near-wall k—
€ closure:
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where ¢ is the time, x; the Cartesian space coordinates, u; the
velocity components, p the density, p the pressure, T the tem-
perature, o the enthalpy, ¥ = 1.4 the isentropic exponent
R, = 287.04 m® 52 K~ the gas constant for air, 1, = h+ i the
total enthalpy of the mean flow (which is different from h= h k),
k the turbulence kinetic energy, &* the isotropic part of the
turbulence-kinetic-energy dissipation rate (¢* = ¢ — 2v{grad/k]?,
where ¢ is the dissipation rate, and v the kinematic viscosity),
7;; the viscous stress tensor, o the molecular dynamic viscosity,
ur the eddy viscosity, ¥ the molecular heat conductivity, and
kr the eddy heat conductivity; - denotes Favre averaging, and -
denotes nonweighted averaging. The near-wall terms, accounting
for the anisotropic part of the dissipation rate, in the k equation
(2ulgrady/k]%) and in the ¢ equation (2vur[V?V]?), are written
in Cartesian tensor form, independently of the wall distance or
orientation.** % The model constants and the molecular diffusion
coefficients are

Co=1.44;  Cop=192;
fia(Rer) = 1 — 0.3¢~ ke

oy = 1; o, =13

®)
Rer = k*/ve*
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ur = Cyfu(Rer)uRer; C,=0.09 where V) ; is the control-volume computed as the sum of 6 pyra-
mids.*® The viscous fluxes at cell-faces are given by
i —3.4
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w(T) = par l:

K(T) = 173 [ (T)/ aza)[1 + 0.00023(T — 273.15)]

where o3 = 17.11 x 107% Pa s, and «»73 = 0.0242 Wm~! K1,

Note that a source term is present in the mean-flow energy equa-
tion [Eg. (3)]. This term is necessary because the averaging operator
oh, = ph+ (/2D puu; = ph, + pk introduces the turbulence ki-
netic energy k = (1 /2);\"/ Several authors include this term by
introducing a modified pressure pf=p+ ,ok (Refs. 31 and 55),
whereas others neglect it since it becomes 1mp0rtant only in high-
supersonic flows.****> This new formulation introduces the cor-
rect fully coupled mean-flow energy equation, while avoiding the
modified-pressure formulation.

Space-Discretization

These equations [Eqs. (1-5)] are discretized on a structured grid
using a finite volume technique, with vertex storage. Defining the
vector of unknowns w (not to be confused with the velocity compo-
nent w)

w = [p, pii, pv, piv, ph, — p, pk, pe"l" € R' (11)
the Navier—Stokes [Eqgs. (1-3)] and turbulence-transport equations
[Egs. (4) and (5)] can be written

ow .
- + div[F(w) + VFw) + Sw)] = 0 (12)

where the convective fluxes °F € R’ @ Rs, the viscous fluxes VF €
R’ @ R?, and the source terms S(w) € R are easily identified from
Egs. (1--5). The divergence of convective fluxes is discretized us-
ing the flux-vector-splitting method of Van Leer” with third-order
MUSCL interpolation™ and Van Albada limiters.}” The divergence
of viscous fluxes is computed using the centered scheme described
by Arnone.® The present implementation follows closely the work
of Anderson et al.”®"" Defining a staggered grid

1
Xigljtiuasd = g tXisiju FXivijtih T X1k
X ket Xt X ket T X k] (13)

and noting (&, n,¢) the grid directions (i, j, k), (Szi(l/Z)jk,
1Siixamks Sijkxqas) the cell-face areas of the staggered-
grid cell around the point (i, j, k), and ¢ Rt (12), .k TR £ 120k
n; jk+ () the corresponding normals, the semidiscrete scheme
can be written

"Fiiiix= HVFiju+ VFijxix] (15)
"Fijuey =3[ Fiju+ " Fijuxi]

and the Van Leer fluxes are given by
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where M, (w, )=V (w)-n/aw)=V,/a and a(w)=./[y R,T(W)].
The MUSCL variables are given by
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where the MUSCL interpolation w* and the Van Albada limiters s
are

wEW_, wo, wet) = wo F{(6/DILF (5/3)]1 (W41 — wo)
+ (/D £ (/31w —w_1)}
s(w_i,wo, wyi) =

2dif(w 1, wo) - dif(wg, w_1) + 1073
dif(W+1, W()) . dif(W.H s W()) + dif(W(), W._l) . dif(W(), W_1) + 10-2

(18)

where the 1072 term is introduced to avoid division by 0 and

Opo — OB Palla — Ppilp PaUs — Pp¥
dif(WA,WB)=|:pA PB PAUg — PBUB PAVA — PBUB

PAB PABGAB PABAAB

AWy — Ppllp (ﬁA;le — Pa) — (/53;!:3 — Ps)

PABGAB

T
,0, o] (19)

2
PABALR

where pag = 3(fa + pp) and 1(as + ap). The nondimensional
differences are necessary because the present code is written di-
rectly in SI units, contrary to the usual nondimensional practice.
Appropriate extrapolations are used at the boundaries of the com-
putational domain.*® Viscous stresses are computed using a centered
second-order finite difference scheme.®®

Time Integration

Denoting by L, ; « the discretized form of the space operator (di-
vergence and source terms), the semi discrete equation at grid-point
(i, j, k) gives

dwi, dro
d"t]’k tLik=EO Vijk &= - + £() =0 (20)
where to = [y, Wi i2,..., wyinnl] € RTVNXNE gng
2 = [['l,l,ls Ll,l,Zy e LNi,Nj,Nk]T e R7XN!XN_] x Nk are the

global vectors of the unknowns and space operators. The time dis-
cretization of the semidiscrete scheme uses a first-order implicit
scheme, and can be written between instants r» and r + 1

_‘E n+1 _n ~ n 21
(27+Azam)( o ) = —ArL(") (21)

where J € R X NI xNjxNkx(TxNixNjxN6) i¢ the jdentity matrix
and the Jacobian matrix 9.£/dto is evaluated at time n. Any ap-
proximation of the system matrix will retain formal first-order time-
accuracy, which is sufficient for steady computations. The resulting
linear system is solved after approximate factorization of the Jaco-
bian matrix of convective and viscous fluxes and source terms. The
bandwidth of the spacewise systems is reduced using a spatially
first-order accurate approximation for the implicit term. Viscous
terms are treated using a spectral radius approximation.

At jx Ay 1k S AW, Lk + (1 + Atijx .\ i.j,k) EAwi,j,k
+ Al PA - S AW = = A "Lk
At A "AW e+ (T AL Ak ) AW G
FAG Ak TAW = EAwi,j,k (22)
Aty ja A jarr SOW G+ (L4 At A ) CAW ik
AL Ak AW = TAW
d

S
(1 -+ Al’i.j»k%( ”w,«,j,k))Aw,-yj‘k = wa,-,j,k

The three successive spacewise linear systems are solved using
banded lower-upper (LU) factorization.”! The corresponding band-
width is (1 + 2 x 13). The implicit phase for the source-terms
involves only the local inversion of a 2 x 2 matrix. The 7 x 7 real
matrices #7A ;11 ka1, S TFA Lk, S/ 3w, are given in Vallet %2

Local Time Step

The local time step is based on a combined convective (Courant)

and viscous (von Neumann) criterion*S:

Abijr <
82
CFL min { = b , =5 Vi, j,k
V+a/T+ (5/3)(y — Vk/aD) 2veq
beg = max {§(v +v7), [(¥ = D/pReJlk +rer))  (23)

where £, is the grid cell size, V the flow velocity, a the sound veloc-
ity, and veq the equivalent diffusivity, computed by MacCormack.®
Note that the turbulence Mach number'® My = ./(2ka™?) appears
in the convective stability time step, as has been demonstrated by
many authors.?”31:4 The particular form used here was given re-
cently by Raulot™ and is based on a one-dimensional stability anal-
ysis. For steady computations, a CFL = 50 is used with local time

stepping.

Boundary Conditions

To achieve the high time steps used and the associated rapid con-
vergence rate, it is indispensible to apply boundary conditions both
implicitly and explicitly. The following boundary conditions were

implemented.
Inflow reservoir condition:
w5 ah oV = (Vo) _
ot at ot 24)
ok ae*
—_——= O, £ -
at at
Adiabatic wall condition:
- ap aT
v=0, L-0 =0 k=0 =0
an an
(25)
Outflow pressure condition:
3p 35 av
on n 26)
ok *
9k o, & ~0
an on
Plane-of-symmetry condition:
W _o V.on=0 27
— =10 R =
on @n

where § = s(p, T) is the entropy and n the unit normal to the
boundary. The inflow boundary condition is implemented using the
theory of finite waves®* and is treated implicitly following the correc-
tions method of Chakravarthy,” to account for the outgoing pressure
wave,

Initialization

The authors believe that for practical purposes a Navier—Stokes
solver must be able to start from a simple initialization of the flow-
field. For stability it is best to fit analytic flat-plate profiles at solid
boundaries. These profiles are fitted to a simple inviscid flowfield ob-
tained by linearly interpolating pressure between inflow and outflow,
and assuming isentropic adiabatic evolution. The mean flow and tur-
bulence profiles are obtained analytically in a manner similar to that
of Gerolymos.* In the case of solid corners, the two-dimensional
profiles are extended to three dimensional using a simple blend-
ing rule, based on the distance from the walls. The details for the
initialization procedure are given in Vallet.?
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k—¢ Positivity and Boundedness

To ensure the stability of the method, it is necessary to intro-
duce limiters for k and &, which may otherwise diverge towards
nonphysical values. The following very simple and particularly ef-
ficient limiters were used:

if{k<0ve <0ver=(ki/e?) > br,}:lk < O0As <0}
(28)

where £7, is a maximum admissible length scale (a characteristic
order-of-magnitude length of the configuration). Divisions by 0 are
avoided throughout the code by adding 10~ to the denominator
[e.g., when k = 0 and &* = 0, k?/e* = k?/(e* + 107%) = 0
and £*2/k = £*2/(k + 1072) = 0]. Also, following Turner and
Jennions®! and Jennions and Turner,” the production of turbulence
kinetic energy was limited to twice the dissipation:

Pc < min{ Py, 2ps”} (29)

These simple positivity and boundedness fixes stabilize the compu-
tations in all of the cases studied in this paper and also in more com-
plex configurations such as wings and turbomachinery cascades.”®
They are less stringent and more effective than the limiters used
previously by Gerolymos,*® the main advantage coming from fix-

ing k and &* to 0 and not appropriating small values as is usually
done 27-43,45.46

Results

Configurations Studied

The numerical method described in this paper was applied to
several transonic channel configurations (Table 2), for which exper-
imental measurements were available.*-°7-%® The first three config-
urations are nominally two dimensional, although as will be shown
in the following, they are contaminated by three-dimensional ef-
fects, because of the shock-wave/boundary-layer interaction at the
channel-corners. The last configuration is fully three dimensional
(geometrically). Because of paper length limitations, only a few of
the results detailed in Vallet> are presented.

Two-Dimensional Results for Délery Nozzles

Initial computations were run in pseudo-two-dimensional mode
using the three-dimensional code. For these computations five
equidistant mesh planes were used in the lateral direction (z wise)
with symmetry conditions on the sidewalls. The computational grid
is generated algebraically. It consists of planes perpendicular to the

x axis, equidistant between the inflow and outflow stations. In the y
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direction the mesh is stretched geometrically. The same y;! isused on
both the upper and lower walls, with the same geometric-progression
ratio ry, so that (with the constraint N; odd) the upper and lower wall
progressions match at half-distance. The two-dimensional results®
are typical for these configurations and agree with results obtained
with different numerical methods.**49-%

Influence of nj,' and CFL Number on Results

To demonstrate that results are independent of time step, com-
putations for Délery B nozzle, using the fine 177 x 193 grid with
yuf = 0.45 (Table 3), were run for CFL numbers 40, 50, 60, and
80. Comparison of the isentropic wall Mach-number distributions
shows?? that there is practically no dependence on time step, whereas
consideration of the number of iterations to convergence (Table 4)
indicates that CFL ~ 50 is nearly optimal.

The importance of grid refinement on results has been discussed
recently by Roache,” who introduced the important concept of grid-
convergence index. This concept is unfortunately not applicable as
such to the grids used in this study because the grids are depen-
dent on two parameters, the number of points (N;, N;, N;) and the
size of the first cell nearest the wall n}. Practical experience of
virtually all users of near-wall turbulence closures (e.g., Table 1)
suggests that n! is the most important parameter concerning grid
quality. In other words the grids necessary for near-wall turbulence
closures depend both on linear refinement (for the away from the
wall regions) and on the nonlinear one associated with the viscous
sublayer resolution. This nonlinear refinement is characterized by
the stretching used (exponential, geometric) and n}. To illustrate
this point pseudo-two-dimensional computations were run, for the
Délery A nozzle using four different grids with the same x-wise reso-
lution (N; = 129), which differ in the y direction (Table 3). The first
two grids have both N; = 129, but one (N; = 129, y}; = 0.41)
is more stretched than the other (N; = 129, y* = 1.09), which
is evidently finer away from the wall (Fig. 1). Then two other
grids (N; = 115,y} = 1.00) and (N; = 111,y; = 1.50)
were used that have the same mesh size at the nozzle axis as the
(N; = 129, y} = 0.41) grid but are less stretched. Such grids
are often tempting to industrial users, as they permit less expen-
sive computations, not only because they have less points (an ef-
fect that is more pronounced in three dimensions) but also because
the coarser near-wall mesh means higher time steps and associated
faster convergence (less iterations). Consideration of results (Fig. 1)
shows clearly that the single most important parameter is n. Grids
(N; =129,y = 1.09) and (N; = 115, y} = 1.00) give prac-
tically identical results, although the second is coarser at the axis.
In general, lower n;} corresponds to lower computed viscous losses

w

Table 2 Configurations studied

Case

Description

Ly x Ly x Lz, mm Mok

Délery AY7
Délery B
Délery C*7

Délery three dimensional®>?8

Two symmetric bumps

Two symmetric bumps

Bump on lower wall

Three-dimensional bump
on lower wall

500 x 100 x 120.0
550 x 100 x 120.0
500 x 100 x 120.0
800 x 100 x 121.3

Chord (¥, mm) Rey Computation
1.30 200 2.0 x 109 Two dimensional
1.45 269 2.5 x 10° Two and three dimensional
1.36 286 2.8 x 10° Two dimensional
1.83 245-370 22-33 x 105  Three dimensional

Table 3 Computational grids summary

Case Ni(Ny) Nj{(Ny) Ni(N;) v z); ry re Computation
Délery A 129 129 5 0.41 _ 1.1500 o Pseudo-two dimensional
129 129 5 1.09 —_ 1.1300 e Pseudo-two dimensional
129 115 5 1.00 _ 1.1550 —_— Pseudo-two dimensional
129 {11 5 1.50 — 1.1525 o Pseudo-two dimensional
177 193 5 041 —_— 1.0920 e Pseudo-two dimensional
Délery B 129 129 5 0.38 o 1.1500 e Pseudo-two dimensional
177 193 5 0.45 e 1.0900 o Pseudo-two dimensional
161 65 65 0.48 0.46 1.1450 1.1500 Three dimensional
161 65 97 0.48 0.46 1.1450 1.0920 Three dimensional
Délery C 129 129 5 0.40 —_ 1.1500 —_— Pseudo-two dimensional
177 193 5 0.50 _— 1.0900 —_ Pseudo-two dimensional
Délery three dimensional 121 49 49 1.50 1.50 1.5100 1.4440 Three dimensional
201 91 101 0.75 0.75 1.2155 1.1935 Three dimensional
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Fig.1 Influence of nj on results for Délery A nozzle.
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Fig.2 Comparison of two- and three-dimensional computations with experiment for Délery B nozzle.
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Fig. 3 Three-dimensional separation at the sidewall corner for Délery B nozzle.
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Fig. 4 M, distributions for Délery three-dimensional nozzle.
Table 4 Influence of CFL number
on convergence
CFL Iterations to convergence
40 1600
50 1400
60 2000
80 2000

and as a consequence a more downstream position of the shock
wave.

Three-Dimensional Effects for Délery B Nozzle

To assess the importance of three-dimensional effects for Délery
B nozzle three-dimensional computations were run. Only % of the
nozzle was discretized, and symmetry conditions were imposed at
the y- and z-wise symmetry planes. The grid was stretched both
y wise and z wise as described in the two-dimensional computa-
tions section. Computations were run with two grids (Table 3) for
which y? = z7; = 0.5. For both grids the mesh at the y-symmetry
plane is identical with the one used for the pseudo-two-dimensional
computations (notice that now only one-half of the nozzle height is
discretized so that 65 points correspond to % of 129, and that the
outflow boundary was placed farther downstream). Both grids yield
identical results (Fig. 2), showing that no further z-wise refinement
is necessary.

There is a substantial difference in isentropic wall Mach-
number distribution between the three-dimensional and the pseudo-

Fig. 5 Iso-Machs for Délery three-dimensional nozzle.

two-dimensional computations (Fig. 2), suggesting that three-
dimensional effects are substantial. This is clearly seen in the
isoplots of Mach number at three different positions away from the
sidewall (Fig. 2) that suggest the presence of important boundary-
layer separation at the corner between the lower wall and the
sidewall, because of the three-dimensional shock-wave/boundary-
layer interaction. This interaction is better understood considering
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Table 5 Computing time requirements for three-diamensional computations

Case Grid (N; x Nj x Ni) Mpoints® Mwords i z Iterations CPU, h*

Délery B 161 x 65 x 65 0.65 53 0.48 0.46 900 14
161 x 65 x 97 0.97 82 0.48 0.46 1000 21

Délery three dimensional 121 x 49 x 49 0.28 25 1.50 1.50 300 3
201 x 91 x 101 1.76 141 0.75 0.75 900 31

4 One Mpoints = 10242, PCray C-98.

the iso-Machs at various x-wise planes, in the neighborhood of
the interaction (Fig. 3) illustrating the detachment and reattach-
ment of the boundary layer. The surface on which M =0.3 (Fig. 3)
shows clearly the displacement effect on the sidewall. This three-
dimensional effect induces a shock wave that is much farther
upstream than the one computed on the assumption that the flow
is two dimensional. The comparison of the three-dimensional com-
putation with experiment is fair but far from satisfactory. Although
the shock wave is now placed at almost the right position (Fig. 2), the
subsequent boundary-layer detachment is grossly underestimated,
because of the inadequacy of the k—¢ model.

Délery Three-Dimensional Nozzle

This configuration consists of a swept three-dimensional bump
on the lower wall. The upper wall is slightly sloped downward, and
the two sidewalls are parallel planes. As in all preceding cases the
experimental setup includes an adjustable second throat, which is
used to generate and adjust the shock wave.?’-*® Contrary to the usual
computational practice of imposing a constant back pressure (which
was also used in the preceding sections) it was preferred to include
the second throat in the computations. The flow is accelerated to
a supersonic exit, and the shock-wave position is adjusted by the
second throat area. Initial tests using a very coarse ~0.28 M points
grid (Table 3) were used to determine the throat height.

Results using a ~1.76M points grid (Table 3) with y} =z} =
0.75 show quite satisfactory agreement with the measured isen-
tropic wall Mach-number distributions on the lower wall (Fig. 4).
The agreement is remarkable at the symmetry plane (z = 61.3 mm)
where the A shock wave is accurately predicted. The agreement
is fair but less satisfactory near the sidewalls. Toward the far wall
(shorter bump) there appears, in both the experiment and the compu-
tations, the A shock-wave structure, but although the position of the
first shock wave is well predicted, the computations underestimate
the strength of the second shock wave. Toward the near wall (longer
bump) the shock wave is stronger and the computations underesti-
mate the detachment of the boundary layer after the interaction and
fail to predict the pressure-plateau at the near-wall corner.

The flow structure is shown in the iso-Machs plots (Fig. 5). There
is alarge recirculation zone at the lower wall near the corner because
of the strong shock wave (M;,,~1.8), whereas the flow remains
attached at the far corner. The shock wave on the upper wall is
quite strong (M;,,~1.65), and there is a noticeable boundary-layer
separation that spans the entire channel width.

Computing Time Requirements

The code runs on a Cray C-98 computer. Its vectorization is ad-
equate but not outstanding (~250 Mflops), and computing-time re-
quirements (Table 5) can still be substantially reduced. The comput-
ing time necessary for the pseudo-two-dimensional computations is
not presented because it cannot be compared with two-dimensional
methods (five transverse planes are used). Note that a deliberate
choice was made to minimize memory requirements, even at a small
sacrifice of computational rapidity (the linear systems are solved on
a plane-by-plane basis and not on a global one, thus diminishing
vector performance).

Conclusions

In the present work an efficient and robust computational method
for the numerical integration of the compressible Navier—Stokes
equations with near-wall k— closure was developed. The method
has optimal convergence (for all of the cases studied) at CFL. = 50
and runs from a simple automatic initialization of the flowfield. The
time steps obtained are quite large compared with the state of the

art of time-marching schemes using k—¢ closure for transonic flows.
The code is written in SI units.

The results obtained are typical of the near-wall k—¢ closure.
Nonetheless the three-dimensional computations of the Délery B
test case highlight a particularly important and usually neglected fea-
ture of nominally two-dimensional transonic shock-wave/boundary-
layer experiments, i.e., that they are really three dimensional and
should be used for code validation as such. Although, because
of the inaccuracy of the k—¢ closure, the agreement of the three-
dimensional computations with experiment is not quite satisfactory,
the difference between two- and three-dimensional results, obtained
by the same code on the same grid, underlines the importance of
three-dimensional effects in this case and raises the question of
validity of two-dimensional computations that would accurately re-
produce this flow. This does not negate the importance of such exper-
iments: it is simply necessary to compute the full three-dimensional
configuration.

The satisfactory results for the Délery three-dimensional case are
mainly because of the simulation of the second throat. This is very
important because there exists no plane before the throat where static
pressure is nearly homogeneous.

A grid refinement study has confirmed that r; is the single most
important parameter for accuracy (for transonic flows it is necessary
that n}, < 0.75). In general, lower n} corresponds to lower com-
puted viscous losses and, as a consequence, a more downstream
position of the shock wave. This study has shown that the concept
of grid convergence index is not applicable in the case of grids de-
pendent on two parameters, the number of points and the size of the
first cell nearest the wall i\

The authors are working on many improvements. In order of
importance the improvements are improvement of the turbulence
model using full Reynolds-stress near-wall closures; the use of ac-
curate Jacobians for the viscous fluxes and eventually of nonfactored
implicit schemes, although these would only become competitive for
optimal CFL > 500 and can only be implemented in large-memory
systems (for the three-dimensional grids used in this study); and
the improvement of the space discretization using advanced upwind
techniques.
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